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Abstract

Kim, Kojima, Mevissen, and Yamashita recently proved that a chordal-structured pos-
itive semidefinite (PSD) matrix can be decomposed as a sum of PSD matrices that corre-
spond to the maximal cliques. Their proof is based on a characterization for PSD matrix
completion of a chordal-structured matrix due to Grone, Johnson, Sá, and Wolkowicz in
1984. This note gives a direct and simpler proof for the result of Kim et al., which leads to
an alternative proof of Grone et al.

1 Matrix Decomposition of Chordal-Structured Matrices

Let G = (N, E) be a graph with vertex set N = {1, . . . , n} and edge set E ⊆ N × N . In this
note, we regard G as an undirected graph by assuming that (i, j) and (j, i) are identified, i.e.,
if (i, j) ∈ E then (j, i) ∈ E. A graph G is chordal if every cycle of length at least three has
a chord. A vertex of G is called simplicial if its neighbor forms a clique. A chordal graph is
known to have a simplicial vertex. See [1] for basic properties on chordal graphs.

Let Sn be the set of symmetric matrices of order n, and Sn
+ be the set of positive semidefinite

matrices in Sn. For F ⊆ N × N , we define RF = {X ∈ Sn | Xij = 0,∀(i, j) ̸∈ F}. For a graph
G = (N,E), let Sn

+(E, 0) be the set of PSD matrices all of whose entries not in E are equal to
zero. Thus Sn

+(E, 0) = Sn
+ ∩ RE . Note that Sn

+(E, 0) is a closed set, because Sn
+ and RE are

closed. For a set W ⊆ N , we denote Sn
+(W ) = Sn

+ ∩ RW×W .
Kim, Kojima, Mevissen, and Yamashita [3] showed that a chordal-structured PSD matrix

can be decomposed as a sum of PSD matrices that correspond to the maximal cliques. This note
gives an alternative proof using simple linear algebra, which allows us to impose an additional
rank condition on PSD matrices obtained by the decomposition. We denote Ed = {(i, i) | i ∈
N}.
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Theorem 1. Let G = (N, E) be a chordal graph with Ed ⊆ E, and C1, . . . , Cp be the maximal
cliques of G. For a symmetric matrix A ∈ RE of order n, the following (a) and (b) are
equivalent.

(a) The matrix A is positive semidefinite.

(b) There exist Y k ∈ Sn
+(Ck) (k = 1, . . . , p) such that A =

∑p
k=1 Y k and rankA =

∑p
k=1 rankY k.

Proof. It suffices to show “(a)⇒(b)”. Assume that A is positive semidefinite.
We prove this statement by induction on n. The case of n = 1 is obvious. Assume that

n > 1. Since G is chordal, G has a simplicial vertex v. We may suppose that the maximal
clique containing v, which is unique, is C1. By row and column permutations, we may further
suppose that v = 1 and C1 \ {v} = {2, . . . , m}. Thus the matrix A is in the form of

A =

 a11 a1
T 0

a1 A[C ′
1, C

′
1] A[C ′

1, C1]
0 A[C1, C

′
1] A[C1, C1]

 ,

where C ′
1 = C1 \ {v}, C1 = N \ C1, and A[I, J ] in general denotes the submatrix with row set

I and column set J .
First assume that a11 = 0. Since A is positive semidefinite, we have a1 = 0. The subgraph

G′ induced by N \ {1} is chordal, and the maximal cliques of G′ are those in C ′
1, C2, . . . , Cp.

Therefore, by applying the induction hypothesis to the matrix obtained from A by deleting
the first row and column, A can be represented by A =

∑p
k=1 Y k for some Y 1 ∈ Sn

+(C ′
1) and

Y k ∈ Sn
+(Ck) (k = 2, . . . , p) with

∑p
k=1 rankY k = rankA. By Y 1 ∈ Sn

+(C1), the condition (b)
holds.

Next assume that a11 ̸= 0. Then the matrix A can be transformed into

LALT =

 a11 0 0
0 A[C ′

1, C
′
1] − a−1

11 a1a1
T A[C ′

1, C1]
0 A[C1, C

′
1] A[C1, C1]

 ,

where

L =

 1 0 0
−a−1

11 a1 I O

0 O I

 .

Hence

A = L−1


 a11 0 0

0 O O

0 O O

 +

 0 0 0
0 A[C ′

1, C
′
1] − a−1

11 a1a1
T A[C ′

1, C1]
0 A[C1, C

′
1] A[C1, C1]


 (L−1)T

=

 a11 a1
T 0

a1 a−1
11 a1a1

T O

0 O O

 +

 0 0 0
0 A[C ′

1, C
′
1] − a−1

11 a1a1
T A[C ′

1, C1]
0 A[C1, C

′
1] A[C1, C1]

 .
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The first and second matrices in the right-hand side are denoted by X and A′, respectively.
Since L is nonsingular and A is positive semidefinite, X and A′ are both positive semidefinite.
The vertex v is simplicial, which implies that if an (i, j)-entry of a−1

11 a1a1
T is nonzero then

i, j ∈ C1. Hence X ∈ Sn
+(C1) holds, and the lower-right part of A′ corresponds to the chordal

subgraph induced by N \{1}. The maximal cliques of G′ are either C2, . . . , Cp or C ′
1, C2, . . . , Cp.

By applying the induction hypothesis to the matrix obtained from A′ by deleting the first
row and column, A′ can be decomposed into A′ =

∑p
k=1 Y ′k for some Y ′1 ∈ Sn

+(C ′
1) and

Y ′k ∈ Sn
+(Ck) (k = 2, . . . , p) with rankA′ =

∑p
k=1 rankY ′k, where Y ′1 = O if C ′

1 is not maximal.
Define Y 1 = X + Y ′1 ∈ Sn

+(C1) and Y k = Y ′k ∈ Sn
+(Ck) (k = 2, . . . , p). Then A = X + A′ =∑p

k=1 Y k holds. Moreover, rankA = rankLALT = rankA′ + 1 and rankY 1 = rankLY 1LT =
1+rankY ′1 hold, which implies that

∑p
k=1 rankY k = rankA. Thus the condition (b) holds.

Note that rank(X + Y ) ≤ rankX + rankY for matrices X and Y . Hence Y k (k = 1, . . . , p)
in Theorem 1 are matrices minimizing

∑p
k=1 rankY k subject to

∑p
k=1 Y k = A and Y k ∈

Sn
+(Ck) (k = 1, . . . , p).

2 PSD Matrix Completion for Chordal-Structured Matrices

Positive semidefinite matrix completion is the following problem: Given a symmetric matrix
A some of whose entries, denoted by E ⊆ N × N , are specified, can we make A positive
semidefinite by assigning values to entries not in E?

We define Sn
+(E, ?) ⊆ Sn to be the set of symmetric matrices that can be made positive

semidefinite by changing entries in E, where F is the complement for a set F ⊆ N × N . That
is, X ∈ Sn

+(E, ?) means that there exists X ′ ∈ Sn
+ such that X ′

ij = Xij for any (i, j) ∈ E.
Thus Sn

+(E, ?) represents the set of symmetric matrices that can be completed to a positive
semidefinite matrix. By the definition, we have Sn

+(E, ?) = Sn
+ + RE (Minkowski sum), which

is a closed set as shown in Lemma 5 below.
For a convex cone K ⊆ Sn, we define the polar K∗ to be K∗ = {Y | X • Y ≥ 0,∀X ∈ K},

where X • Y is the trace of XY for X, Y ∈ Sn. Taking the polar of Sn
+(E, 0) in Theorem 1, we

obtain Corollary 2 below, which is equivalent to the result of Grone et al. [2] about the positive
semidefinite matrix completion for chordal-structured matrices. Kim et al. [3] derived Theorem
1 from this corollary. Thus Theorem 1 and Corollary 2 are equivalent in terms of polarity.

Corollary 2 (Grone, Johnson, Sá, and Wolkowicz [2]). Let G = (N, E) be a chordal graph
with Ed ⊆ E, and C1, . . . , Cp be the maximal cliques of G. Then the following (a) and (b) are
equivalent.

(a) The matrix A is in Sn
+(E, ?).

(b) For any k ∈ {1, . . . , p}, the principal submatrix with row and column sets Ck is positive
semidefinite.

In order to derive this corollary from Theorem 1, we use the following well-known facts.
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Lemma 3. (1) For two cones K1, K2, it holds that (K1 + K2)∗ = K∗
1 ∩ K∗

2.

(2) For two closed convex cones K1, K2, it holds that (K1 ∩ K2)∗ = cl(K∗
1 + K∗

2).

(3) It holds that (Sn
+)∗ = Sn

+ and (RF )∗ = RF for any F ⊆ N × N .

Proof of Corollary 2. It suffices to show “(b)⇒(a)”.
By Theorem 1, Sn

+(E, 0) = Sn
+(C1) + · · · + Sn

+(Cp). Since Sn
+(E, 0) = Sn

+ ∩ RE , we obtain

cl(Sn
+ + RE) = (Sn

+(C1))∗ ∩ · · · ∩ (Sn
+(Cp))∗

by taking the polarity and Lemma 3. The left-hand side is equal to Sn
+ + RE = Sn

+(E, ?) since
Sn

+(E, ?) is closed. Since Sn
+(Ck) = Sn

+∩RDk
, where Dk = Ck ×Ck, for any k, Lemma 3 implies

that (Sn
+(Ck))∗ = cl(Sn

+ +RDk
). Therefore, Sn

+(E, ?) ⊇
∩p

k=1(S
n
+ +RDk

) holds. This right-hand
side means that the principal submatrix with row and column sets Ck is positive semidefinite
for any k, because Sn

+ + RDk
= S|Ck|

+ ⊕ RDk
. Thus we have “(b)⇒(a)”.

It remains to show that Sn
+(E, ?) is closed. For that purpose, we need the following lemma.

Lemma 4 (Corollary 9.1.3 of Rockafellar [4]). Let K1, K2 be two closed convex cones, and
assume that, if X1 ∈ K1 and X2 ∈ K2 satisfy X1 + X2 = 0, then we have Xi ∈ Ki ∩ (−Ki) (i =
1, 2) holds. Then cl(K1 + K2) = K1 + K2 holds.

Lemma 5. Let G = (N, E) be a graph with Ed ⊆ E. Then Sn
+(E, ?) is a closed set.

Proof. Note that Sn
+(E, ?) = Sn

++RE . Assume that A1 ∈ Sn
+ and A2 ∈ RE satisfy A1+A2 = O.

Then A2 ∈ RE implies (A1)ij = (A2)ij = 0 for any (i, j) ∈ E. By Ed ⊆ E and A1 ∈ Sn
+, we

have A1 = O. Hence A1 = A2 = O holds. Since O is contained in Sn
+∩ (−Sn

+) and RE ∩ (−RE),
it follows from Lemma 4 that cl(Sn

+ + RE) = Sn
+ + RE . Thus Sn

+(E, ?) is closed.
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