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Abstract

The well-known theorem of Erdős and Pósa says that G has either k disjoint cycles or a vertex
set X of order at most f(k) such that G \X is a forest. Starting with this result, there are many
results concerning packing and covering cycles in graph theory and combinatorial optimization.

In this paper, we generalize Erdős-Pósa’s result. Given an integer k and a vertex subset S
(possibly unbounded number of vertices) in a given graph G, we prove that either G has k disjoint
cycles, each of which contains at least one vertex of S, or G has a vertex set X of order at most
f(k) such that G \ X has no such a cycle. Our proof implies the function f is bounded by a
polynomial function, that is, f(k) = Õ(k4).

1 Introduction

Packing and covering vertex-disjoint cycles are one of the central areas in both graph theory and
theoretical computer science. The starting point of this research area goes back to the following
well-known theorem due to Erdős and Pósa [3] in early 1960’s.

Theorem 1.1 (Erdős and Pósa [3]) For any integer k and any graph G, either G contains k
vertex-disjoint cycles or a vertex set X of order at most f(k) (for some function f of k) such that
G \ X is a forest.

In fact, Theorem 1.1 gives rise to the well-known Erdős-Pósa property. A family F of graphs
is said to have the Erdős-Pósa property, if for every integer k there is an integer f(k,F) such that
every graph G contains either k vertex-disjoint subgraphs each isomorphic to a graph in F or a set
C of at most f(k,F) vertices such that G \ C has no subgraph isomorphic to a graph in F . The
term Erdős-Pósa property arose because of Theorem 1.1 which proves that the family of cycles has
this property.

Theorem 1.1 is about both “packing”, i.e., k vertex-disjoint cycles and “covering”, i.e., at most
f(k) vertices that hit all the cycles in G. Starting with this result, there is a host of results in this

∗Department of Mathematical Informatics, Graduate School of Information Science and Technology, University of
Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. kakimura@mist.i.u-tokyo.ac.jp

†Partly supported by Grant-in-Aid for Scientific Research and by Global COE Program “The research and training
center for new development in mathematics.”

‡National Institute of Informatics, Japan. k keniti@nii.ac.jp
§Partly supported by Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research, by C & C

Foundation, by Kayamori Foundation and by Inoue Research Award for Young Scientists.
¶Blavatnik School of Computer Science, Tel Aviv University, Israel. dmarx@cs.bme.hu

1



direction. Packing appears almost everywhere in extremal graph theory, while covering leads to the
well-known concept “feedback set” in theoretical computer science. Also, the cycle packing problem,
which asks whether or not there are k vertex-disjoint cycles in an input graph G, is a well-known
problem too, e.g., [5].

In addition to the feedback set problem, a natural generalization of the cycle packing problem
has been studied extensively in theoretical computer science. The problem called “S-cycle packing”
is that we are given a graph G and a subset S of its vertices, and the goal is to find among the
cycles that intersect S a maximum number of vertex-disjoint (or edge-disjoint) ones. See [5] for more
details. As pointed out there, this problem is rather close to the well-known “the disjoint paths”
problem [6], and approximation algorithms to find an S-cycle packing have been studied extensively.
But on the other hand, it seems that the Erdős-Pósa type result has not been explored yet. This is
our motivation of this paper. We prove that the Erdős-Pósa type result holds for the S-cycle packing
problem. So this is a generalization of Theorem 1.1 to the “subset” version.

Let us formally define the S-cycle packing. Let G = (V, E) be an undirected graph with vertex
set V and edge set E. For S ⊆ V , an S-cycle is a cycle which has a vertex in S. We denote by νS(G)
the maximum k such that G has k S-cycles that are pairwise disjoint. A vertex subset that meets
all S-cycles is called an S-hitting set. The minimum size of an S-hitting set is denoted by τS(G).

In this paper, we show the following theorem. If S = V then this coincides with Theorem 1.1.

Theorem 1.2 Let k be a positive integer. Then there exists a constant f(k) such that any graph
G = (V, E) with S ⊆ V satisfies νS(G) ≥ k or τS(G) ≤ f(k).

It should be noted that our proof yields a polynomial bound f(k) = O(k4 log2 k). Lower bound for
the function f(k) is Ω(k log k) in the case of S = V [3].

In the next section, we give some lemmas needed for the proof of Theorem 1.2. Our main proof
follows in Section 3.

2 Preliminaries

2.1 Packing Paths through Prescribed Vertices

Let G = (V, E) be a graph with A,B ⊆ V . A linkage L from A to B in G is a subgraph consisting
of vertex-disjoint paths each of which starts with A and ends with B. The size of a linkage is the
number of the disjoint paths. We assume that a path has at least one vertex and no repeated vertices.
A separation in G is an ordered pair (X,Y ) of subsets of V with X ∪ Y = V so that G has no edges
between X \ Y and Y \ X. Its order is |X ∩ Y |. It is well known as Menger’s theorem that a graph
G = (V, E) with A,B ⊆ V has either a linkage from A to B of size k, or a separation (X,Y ) of G of
order < k with A ⊆ X and B ⊆ Y .

For S, T ⊆ V with S ∩ T = ∅, an S-path with respect to T is a path with end vertices in T going
through S. The end vertices of an S-path are called the terminals. We obtain the following theorem,
which follows from the odd path theorem by Geelen, Gerards, Reed, Seymour, and Vetta [4].

Theorem 2.1 Let G = (V, E) be a graph, and S, T ⊆ V with S ∩ T = ∅. Then, if G has no k
disjoint S-paths with respect to T , then there exists Z ⊆ V with |Z| ≤ 2k − 2 that intersects every
S-path with respect to T .
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Theorem 2.2 (Geelen, Gerards, Reed, Seymour, and Vetta [4]) Let G = (V, E) be a graph
with T ⊆ V . Then, if G has no k disjoint paths each of which has an odd number of edges and its
end points in T , then there exists Z ⊆ V with |Z| ≤ 2k − 2 that intersects every such path.

Proof of Theorem 2.1: We construct a graph G′ from G as follows. We first subdivide every edge
with a new vertex, and, for every vertex in S, add an edge between it and all its original neighbors.
Then if a path connecting two vertices of T in G′ is odd, then the corresponding path in G contains
a vertex of S, i.e., an S-path. Moreover, an S-path with respect to T in G gives rise to an odd path
connecting two vertices of T in G′. Therefore, G′ has k disjoint odd paths with end vertices in T if
and only if G has k disjoint S-paths with respect to T . Thus, by Theorem 2.2, we obtain Theorem
2.1. ¤

2.2 Brambles and Well-attached Ladders

In this section, we first review brambles, established in the graph minor theory. A bramble in a graph
G is a set B of connected subgraphs every two of which touch, that is, either intersect or are joined
by an edge. A transversal of a bramble B is a set of vertices which meets each element of B. The
order of B is defined to be the minimum size of a transversal.

Given a bramble B of order r and a vertex subset X with |X| < r, there is a subgraph in B which
is disjoint from X, and hence there is a component of G\X containing a subgraph in B. Since every
pair of elements in B touch, this component is unique. We call such a component the big component
of G \X. For an integer p ≤ r, we say that a subgraph is p-attached to B if this subgraph intersects
the big component of G \ X for any X with |X| < p.

A ladder of length h is defined to be a graph which is isomorphic to a subdivision of the graph
Lh with vertex set V (Lh) = {(i, j) | 1 ≤ i ≤ h 1 ≤ j ≤ 2} in which two vertices (i, j) and (i′, j′)
are adjacent if and only if |i − i′| + |j − j′| = 1 holds. A ladder of length h forms a 2 × h wall. A
subladder of a ladder is a subgraph which is a ladder. A perimeter of a ladder is the boundary cycle
of the ladder.

We show that if G has a bramble of large order, then G has a ladder which is well-attached. More
precisely, we show the following theorem.

Theorem 2.3 Let h, p be a positive integer with h ≥ 3p − 2. Define

r = 4(h − 1)2 + 4.

Then, if G has a bramble B of order r, then G has a ladder of length h such that the perimeter of
any subladder of length ≥ 3p − 2 is p-attached to B.

To prove this theorem, we make use of the results by Birmelé, Bondy, and Reed [1]. For X ⊆ V ,
an X-sun (C,P1, . . . , Pq) consists of a cycle C together with q disjoint paths from V (C) to X, all
internally disjoint from C. Note that the paths Pi could be trivial. The paths Pi are called the rays
of the sun, and the end vertices of Pi in C are the roots. The value q is the order of the sun. The
following lemmas are shown in [1].

Lemma 2.4 Let B be a bramble of order r ≥ 3, and F be its minimum transversal. Then there
exists an F -sun of order r.
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Lemma 2.5 Let F be a minimum transversal of B, and F1 and F2 be disjoint subsets of F with
|F1| = |F2| = r. Then there are r disjoint paths linking F1 and F2.

We need the following result by Erdős and Szekeres [2].

Proposition 2.6 Let s, t be integers, and let n = (s − 1)(t − 1) + 1, and let a1, . . . , an be distinct
integers. Then either

• there exist 1 < i1 < · · · < is ≤ n so that ai1 < · · · < ais,

• there exist 1 < i1 < · · · < it ≤ n so that ai1 > · · · > ait.

Proof of Theorem 2.3: We denote r = 4r′, that is, r′ = (h − 1)2 + 1. Let F be a minimum
transversal. It follows from Lemma 2.4 that G has an F -sun of order r, denoted by (C, P1, . . . , Pr).
Let C1 and C2 be a partition of C, each containing the roots of at least 2r′ rays of the sun. We
denote by Fi the set of vertices in F reached by the rays rooted in Ci for i = 1, 2. Lemma 2.5 implies
that there exist 2r′ disjoint paths, denoted by Q1, . . . , Q2r′ , from F1 to F2. The path Qi connects
to two rays with end vertices in F1 and F2, respectively. These two rays, together with Qi, yield a
walk Wi from V (C1) to V (C2). Since each vertex of G is used in at most two of the 2r′ walks from
V (C1) to V (C2), there exists no separation (X,Y ) with V (C1) ⊆ X, V (C2) ⊆ Y , and |X ∩ Y | < r′,
and hence there exist r′ disjoint paths in the walks. By taking minimal paths from C1 to C2 in
these paths, we may assume that these paths are internally disjoint from C. Such disjoint paths are
denoted by R1, . . . , Rr′ . Let Z be the set of the end vertices of R1, . . . , Rr′ in V (C1).

By applying Proposition 2.6 to Z, there are h disjoint paths Rm1 , . . . , Rmh
such that either two

of them reach C2 in the same order, or in the opposite order. We denote the end vertices of Rm1

by a1 ∈ V (C1) and a2 ∈ V (C2), and the end vertices of Rmh
by b1 ∈ V (C1) and b2 ∈ V (C2). Let

C ′
1 and C ′

2 be the subpaths of C1 and C2 between a1 and b1 and between a2 and b2, respectively. In
the both orderings of Rm1 , . . . , Rmh

, the union of Rm1 , . . . , Rmh
, C ′

1 and C ′
2 consists of a ladder of

length h.
We next show that any subgraph D containing ≥ 3p− 2 vertices of Z is p-attached to BH , which

completes the proof of this statement. Assume that D is not p-attached. Then there is a vertex set
T with |T | ≤ p− 1 such that the big component T ∗ of G \ T is disjoint from D. Since every element
in B intersects T ∪ T ∗, the set (F ∩ T ∗) ∪ T is a transversal. By the minimality of F , we obtain
|F \ T ∗| ≤ |T | ≤ p− 1, and hence one of F1 and F2 satisfies |Fi \ T ∗| ≤ ⌊(p− 1)/2⌋. We may assume
that |F2 \ T ∗| ≤ ⌊(p − 1)/2⌋.

Every vertex in Z ∩ V (D) is connected to F2 by a path in the union of the walks Wi’s. Since
each vertex in G is used in at most two such paths, at most 2|F2 \ T ∗| ≤ p − 1 of these paths link
Z ∩ V (D) to F2 \ T ∗, and at most 2|T | ≤ 2p − 2 paths link Z ∩ V (D) to F2 ∩ T ∗. Hence G has at
most 3p− 3 paths between Z ∩ V (D) and F2, which contradicts that there are ≥ 3p− 2 such paths.

Therefore, G has a ladder of length h such that the perimeter of each subladder of length ≥ 3p−2
is p-attached. ¤

3 Erdős-Pósa Property for Cycles through Prescribed Vertices

In this section, we shall prove Theorem 1.2 by induction on k. Throughout this section, f(k) is
defined as in Theorem 1.2. If k = 1 then this statement holds by f(1) = 0. We henceforth suppose
that, for ℓ < k, we have f(ℓ) such that, if νS(G) < ℓ, then τS(G) ≤ f(ℓ). Note that we may assume
that each vertex in S is contained in some S-cycle, otherwise we can delete it from S.
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3.1 Defining a Bramble of Large Order

In this subsection, we construct a bramble of a large order if τS(G) is large. For an integer k ≥ 3,
define

f̃(k) = max
i=2,...,k−1

{f(i) + f(k − i + 1)},

and define f̃(2) = 0. Note that, if f(ℓ) is polynomial for ℓ < k, then so is f̃(k). We first show the
following lemma.

Lemma 3.1 Assume that k is a positive integer such that f(ℓ) exists for ℓ < k. Let G = (V,E) be a
graph with S ⊆ V such that νS(G) < k, and H be an S-hitting set with |H| = τS(G). Let H1,H2 ⊆ H
be disjoint subsets with |H1| = |H2| = r, where r ≥ f̃(k). Then there exists a linkage from H1 to H2

of size r with no inner vertices in H.

Proof: Suppose not. Let Z = H \ (H1 ∪ H2). By Menger’s theorem applied to G \ Z, the graph
G has a separation (X, Y ) with H1 ⊆ X, H2 ⊆ Y , Z ⊆ X ∩ Y , and |(X ∩ Y ) \ Z| < r. Since
|H1 ∪ (X ∩ Y )| < |H| = τS(G), there exists an S-cycle C1 with V (C1) ∩ (H1 ∪ (X ∩ Y )) = ∅. By
V (C1) ∩ H ̸= ∅, we have V (C1) ∩ H2 ̸= ∅, and hence V (C1) ∩ Y ̸= ∅. Since (X,Y ) is a separation
and X ∩ Y ∩ V (C1) = ∅, the set V (C1) does not meet X, so V (C1) ⊆ Y \ X. Similarly G has an
S-cycle C2 such that V (C2) ⊆ X \ Y . Thus k ≥ 3.

These two S-cycles C1 and C2 imply νS(G \ X) < k − 1 and νS(G \ Y ) < k − 1. More precisely,
we have νS(G \ X) < i and νS(G \ Y ) < k − i + 1 for some i ∈ {2, . . . , k − 1}. Hence the induction
hypothesis implies that τS(G \ X) ≤ f(i) and τS(G \ Y ) ≤ f(k − i + 1). Since every S-cycle that is
not a cycle of G \ X or G \ Y meets X ∩ Y , we have

τS(G) ≤ τS(G \ X) + τS(G \ Y ) + |X ∩ Y | < f̃(k) + |Z| + r = f̃(k) + |H| − 2r + r ≤ |H|,

which is a contradiction. Thus the statement holds. ¤
Let r be a positive integer. Define H to be a vertex set of order ≥ 3r such that there exists a

linkage from H1 to H2 of size r with no inner vertices in H for any disjoint subsets H1,H2 ⊆ H with
|H1| = |H2| = r. For X ⊆ V with |X| < r, the subgraph G \ X has a unique connected component
GX with |V (GX) ∩ H| ≥ r. We define BH to be the set of such components for any X ⊆ V with
|X| < r. Then BH forms a bramble of order ≥ r, because if we take any two components B1, B2 in
BH then these touch by the definition of H. Thus we have the following lemma by Lemma 3.1.

Lemma 3.2 Assume that k is a positive integer such that f(ℓ) exists for ℓ < k. Let G = (V, E)
be a graph with S ⊆ V such that τS(G) ≥ 3r, where r ≥ f̃(k), and H be an S-hitting set with
|H| = τS(G). Then the set BH is a bramble of order ≥ r.

The following lemma asserts that a long cycle with no vertices of S is well-attached to BH .

Lemma 3.3 Let k be a positive integer such that f(ℓ) exists for ℓ < k, and h be a positive integer.
Then there exists a positive integer r such that the following holds: Let G = (V, E) be a graph with
S ⊆ V such that νS(G) < k and τS(G) ≥ 3r, and H be an S-hitting set with |H| = τS(G). Then G
has a cycle C of length ≥ 3h − 2 with no vertices of S such that C is h-attached to a bramble BH .
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Proof: Define
r = max{4(k(3h − 2) − 1)2 + 4, f̃(k)}.

By r ≥ f̃(k), Lemma 3.2 implies that BH is a bramble of order ≥ r. Therefore, it follows from
Theorem 2.3 that G has a ladder of length k(3h − 2) such that the perimeter of each subladder of
length 3h−2 is h-attached to BH . By νS(G) < k, there exists at least one subladder of length 3h−2
whose perimeter has no vertices of S. Thus the statement holds. ¤

3.2 Using a Well-attached Cycle of Long Length

In this section, we describe that having a well-attached long cycle without vertices of S implies
νS(G) ≥ k or τS(G) ≤ g(k) for some function g. This, together with Lemma 3.3, implies the proof
of Theorem 1.2.

We first show the following lemma.

Lemma 3.4 Let k be a positive integer, and define

K = 4k log2(k + 10).

Assume that G has a cycle C of length > 2K with no vertices of S. If G has K disjoint S-paths with
respect to V (C), then there exist k disjoint S-cycles.

Proof: Consider the subgraph G′ of G formed by C and by the K disjoint paths. Note that C is the
only cycle in G′ that is not an S-cycle and C intersects every other cycle in G′, thus it is sufficient
to show that G′ has k disjoint cycles. Clearly, G′ has 2K vertices of degree 3 and every other vertex
is of degree 2. Therefore, by a result of Simonovits [7], G′ has at least ⌊1

4(2K)/ log2(2K)⌋ vertex-
disjoint cycles. It can be checked that 2K ≤ (k + 10)2 for every k ≥ 1, thus ⌊1

4(2K)/ log2(2K)⌋ ≥
⌊K/(2 log(k + 10)2)⌋ ≥ k, that is, there are k vertex-disjoint cycles in G′. ¤

Therefore, we may assume that G has no K disjoint S-paths with respect to vertices of a long
cycle having no vertices of S. For I ⊆ V , we denote by G[I] the subgraph induced by I.

Lemma 3.5 Let k be a positive integer such that f(ℓ) exists for ℓ < k, and K be a positive integer.
Let G = (V, E) be a graph with S ⊆ V such that νS(G) < k, and H be a minimum S-hitting set
such that BH is a bramble of order ≥ 4K. Assume that G has a cycle C of length ≥ 12K − 2 with
no vertices of S such that C is 4K-attached to BH . If G has no K disjoint S-paths with respect to
V (C), then τS(G) ≤ g(k) holds, where g(k) is defined to be

g(k) = max{6K, f̃(k) + 2K}.

Proof: We denote T = V (C). By Theorem 2.1, there is a vertex subset Z ⊆ V of size ≤ 2K − 2
such that G \ Z has no S-path with respect to T \ Z. We denote S′ = S \ Z and T ′ = T \ Z. Note
that T ′ is nonempty by |T | > |Z|.

For s ∈ S′, the graph G \ Z has a separation (Xs, Ys) of order at most one with s ∈ Xs \ Ys

and T ′ ⊆ Ys. Among such separations (Xs, Ys) with minimum order, choose (Xs, Ys) such that Xs

is minimal. We denote by us the vertex in Xs ∩ Ys if Xs ∩ Ys ̸= ∅. Since (Xs, Ys) is a minimum
separation, there is a path from us to T ′ in G[Ys]. Define X =

∪
s∈S′ Xs and Y =

∩
s∈S′ Ys.

Then we know S′ ⊆ X \ Y and T ′ ⊆ Y . Moreover, the pair (X, Y ) is a separation of G \ Z with
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X ∩ Y = {us | s ∈ S′, Xs ∩ Ys ̸= ∅} ∩ Y . Indeed, each v ∈ X \ Y is not contained in Ys for some
s ∈ S′, and hence v is in Xs ⊆ X and adjacent to no vertex in Y \ X ⊆ Ys \ Xs. Note that each
vertex in X∩Y is a cut vertex of G\Z between a vertex in S′ and the set T ′. We denote U = X∩Y .

Claim 1 We may assume that |U | > 2K + 1.

Proof: Assume to the contrary that |U | ≤ 2K+1. Then |Z∪U | ≤ |Z|+ |U | ≤ 2K−2+2K+1 < 4K
holds. The pair (X ′, Y ′), where X ′ = X ∪ Z and Y ′ = Y ∪ Z, is a separation of G with S ⊆ X ′ \ Y
and T ⊆ Y ′, and its order is < 4K. Since S ⊆ X ′ and a vertex in U is a cut vertex in G \ Z, each
S-cycle of G is contained in X ′, or has a vertex in Z. Hence (H ∩X ′)∪Z is an S-hitting set. By the
minimality of H, we have |H| ≤ |(H ∩X ′)∪Z| ≤ |H ∩X ′|+ |Z|, and hence |H \X ′| ≤ |Z| ≤ 2K − 2
holds. In addition, since C is 4K-attached to BH and V (C) ⊆ Y ′, the set Y ′ \ X ′ includes the big
component of G \ (U ∪ Z). This implies that |H \ X ′| ≥ |H|/3, and hence we obtain

|H| ≤ 3|H \ X ′| ≤ 6(K − 1) ≤ g(k).

Thus Lemma 3.5 holds. ¤
By Claim 1, we know that |S′| ≥ |U | > 2K + 1.

Claim 2 We may assume that there is s0 ∈ S′ such that G[Xs0 ] contains an S-cycle.

Proof: Assume that G[Xs] contains no S-cycle for any s ∈ S′. Then each S-cycle meets a vertex in
Z, which implies that τS(G) ≤ |Z| ≤ 2K − 2 ≤ g(k). Thus Lemma 3.5 holds. ¤

Let X ′
s0

= Xs0 \ {us0} and G′ = G \ X ′
s0

. Note that X ′
s0

⊆ X \ Y and X ′
s0

∩ U = ∅. The pair
(X \X ′

s0
, Y ) is a separation of G′ \Z, and each vertex in U is a cut vertex of G′ \Z between a vertex

of S′ and the vertex set T ′.

Claim 3 The subgraph G′ has an S-cycle.

Proof: Let U = {u1, . . . , um}, where m = |U |. For 1 ≤ j ≤ m, let (Xj , Yj) be a separation of G′ \Z
with Xj ∩ Yj = {uj} such that T ⊆ Yj and Xj \ Yj contains some vertex of S′. Choose (Xj , Yj) such
that Xj is minimal. Then Y ⊆ Yj holds and X1, . . . , Xm are disjoint. We may assume that G′[Xj ]
has no S-cycle for any j, otherwise we are done. Since {uj} = Xs ∩ Ys for some s ∈ S′ and Xs is
chosen minimal, this implies that Xj has a vertex sj of S′ that connects to uj . Moreover, since sj is
contained in some S-cycle in G, this assumption implies that G′ has an edge connecting Xj and Z,
and hence Z is nonempty.

Let Cj be an S-cycle containing sj in G. The subgraph G′[Xj ∪ Z] has a path Pj through sj

from uj to a vertex in Z by using the edge (sj , uj) and Cj . We may suppose that Pj has no inner
vertices in Z by taking a minimal path. By |U | > 2K + 1 ≥ |Z| ≥ 1, there exist a vertex z in Z and
two indices j1, j2 such that both Pj1 and Pj2 end with z. The path Pji is contained in G′[Xji ∪ {z}]
for i = 1, 2, respectively.

The subgraph G′[Yji ] has a path P ′
ji

from uji to a vertex wji of T ′. Since each vertex in U is a
cut vertex in G \ Z, the path P ′

ji
has no vertex of Yji \ Y , and thus is contained in G′[Y ]. We may

assume that P ′
ji

has no inner vertex in T ′. By T ⊆ Y ∪Z, the subgraph G′[Y ∪Z] has two internally
disjoint paths between wj1 and wj2 along C, and hence one of these two paths, denoted by P , does
not have z. Then the union of P ′

j1
, P , and P ′

j2
includes a path in G′[Y ∪ Z \ {z}] from uj1 to uj2 .

This path, together with Pj1 and Pj2 , yields an S-cycle in G′. ¤
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Therefore, both G[Xs0 ] and G′, i.e., G[Ys0 ] have S-cycles, and thus k ≥ 3. These two S-cycles
imply by νS(G) < k that νS(G \ X) < i and νS(G \ Y ) < k − i + 1 for some i ∈ {2, . . . , k − 1}. By
the induction hypothesis, it holds that τS(G \ X) ≤ f(i) and τS(G \ Y ) ≤ f(k − i + 1). Since every
S-cycle that is not a cycle of G \ Ys0 or G \ Xs0 meets Xs0 ∩ Ys0 = Z ∪ {s0}, we have

τS(G) ≤ τS(G \ X) + τS(G \ Y ) + |Z| + 1 ≤ f̃(k) + 2K − 1 ≤ g(k).

Thus the statement holds. ¤
Proof of Theorem 1.2: Define

K = 4k log2(k + 10),
rk = max{4(k(12K − 2) − 1)2 + 4, f̃(k)},

f(k) = max{3rk, f̃(k) + 2K}.

Note that f(k) = max{3rk, g(k)}, where g(k) is defined as in Lemma 3.5. We will show that f(k)
satisfies Theorem 1.2. Assume to the contrary that there is a graph G = (V, E) with S ⊆ V
satisfying νS(G) < k and τS(G) > f(k). By τS(G) ≥ f̃(k), the set BH forms a bramble of order
≥ rk. Moreover, by τS(G) ≥ rk, it follows from Lemma 3.3 that G has a cycle C of length ≥ 12K −2
with no vertices of S such that C is 4K-attached to BH . If G has K disjoint S-paths with respect
to V (C), then νS(G) ≥ k holds by Lemma 3.4. Otherwise, by Lemma 3.5, we have νS(G) ≥ k or
τS(G) ≤ g(k) ≤ f(k). Hence both cases have a contradiction. Thus the statement holds. ¤

References
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