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Abstract

A seminal result of Reed, Robertson, Seymour, and Thomas says that a directed graph
has either k vertex-disjoint directed circuits or a set of at most f(k) vertices meeting all
directed circuits. This paper aims at generalizing their result to packing directed circuits
through prescribed vertices. Even, Naor, Schieber, and Sudan showed a fractional version of
packing such circuits. In this paper, we show that a fractionality can be bounded at most
fifth: Given an integer k and a vertex subset S, whose size may not depend on k, we prove
that either G has a 1/5-integral packing of k disjoint circuits, each of which contains at least
one vertex of S, or G has a vertex set X of order at most f(k) (for some function f of k)
such that G − X has no such a circuit. We also give an FPT approximation algorithm for
finding a 1/5-integral packing of circuits through prescribed vertices. This algorithm finds
a 1/5-integral packing of size approximately k in polynomial time if it has a 1/5-integral
packing of size k for a given directed graph and an integer k.
Key Words: Disjoint Circuits, Feedback Vertex Sets, FPT Approximability

1 Introduction

This paper deals with packing vertex-disjoint circuits in a directed graph. We are given a directed
graph (digraph), which is finite and may have loops and multiple edges. A path and a circuit
of a digraph mean directed path and circuit, respectively. The circuit packing problem is the
problem of finding k vertex-disjoint circuits for a given positive integer k.

A family F of subgraphs is said to have the Erdős-Pósa property if for every integer k there
exists an integer f(k,F) such that every (undirected or directed) graph G contains either k

vertex disjoint subgraphs in F or a set X of at most f(k,F) vertices such that G \ X has no
subgraph in F . The term Erdős-Pósa property arose because in [2], Erdős and Pósa proved that
the family of circuits in an undirected graph has this property. The Erdős-Pósa property is
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Figure 1: A Counterexample for the Erdős-Pósa property for S-circuits

concerned about both “packing”, i.e., k vertex-disjoint subgraphs and “covering”, i.e., at most
f(k) vertices that hit all the subgraphs in G. Starting with this result, there is a host of results
in this direction. Packing appears almost everywhere in extremal graph theory, while covering
leads to the well-known concept “feedback set” in theoretical computer science. Also, the circuit
packing problem is a well-known problem too, e.g., [12].

For a directed graph, the Erdős-Pósa property for the family of directed circuits was con-
jectured by Younger [19] in 1973. Gallai [7] had previously conjectured the case of k = 2, which
was shown by [13], and the planar case was resolved by Reed and Shepherd [16]. In 1996, Reed,
Robertson, Seymour, and Thomas [15] settled Younger’s conjecture:

Theorem 1.1 For any positive integer k, there exists a constant tk such that every digraph
has either k vertex-disjoint circuits, or a vertex subset X with |X| ≤ tk that meets all directed
circuits.

In this paper, we aim at extending Theorem 1.1 to packing vertex-disjoint circuits through
prescribed vertices. Let G = (V, E) be a digraph with vertex set V and arc set E, and S be
a vertex subset. The S-circuit packing problem is the problem of finding k vertex-disjoint S-
circuits for a given positive integer k, where an S-circuit is a circuit which has a vertex in S. We
denote by νS(G) the maximum k such that G has k vertex-disjoint S-circuits. The minimum
size of an S-hitting set, a vertex subset meeting all S-circuits, is denoted by τS(G). Then we
consider the following natural generalization of Theorem 1.1: for a positive integer k, there is a
constant tk such that every digraph G = (V, E) with S ⊆ V satisfies νS(G) ≥ k or τS(G) ≤ tk.
However, this statement does not hold. Indeed, as pointed out by Paul Wollan, a digraph G

as in Figure 1 satisfies νS(G) = 1 because any two S-circuits intersect by the planarity, while
τS(G) = Ω(

√
|V |) holds.

We then relax an S-circuit packing to a half-integral packing as follows:

Conjecture 1.2 Let k be a positive integer. There exists a constant tk such that every digraph
G = (V,E) with prescribed vertices S ⊆ V has either k S-circuits in which each vertex is used
at most twice, or an S-hitting set X with |X| ≤ tk.
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In this paper, we discuss a fractional packing of S-circuits, and tackle to bound its fractionality.
It should be noted that, for an undirected graph, it is shown in [11] that the family of S-circuits
has the Erdős-Pósa property.

1.1 Fractional Packing of Circuits

A fractional packing of (S-)circuits in a digraph G = (V, E) is a function q assigning a non-
negative rational q(C) to every (S-)circuit C, such that for every vertex v,∑

{q(C) | v ∈ V (C)} ≤ 1.

We define the value of q to be the summation of q(C) over all directed (S-)circuits C. The
maximum value of a fractional packing of S-circuits is denoted by ν∗

S(G) (ν∗
S if no ambiguity).

Seymour [17] showed τS(G) = O(ν∗
S log ν∗

S log log ν∗
S) when S = V . This result was extended to

the case of S ( V by Even, Naor, Schieber, and Sudan [5], which means that a fractional version
of the Erdős-Pósa property for S-circuits holds.

The main result of this paper is to show a bounded fractional version of the Erdős-Pósa
property for S-circuits. Let q be a fractional packing of S-circuits. We say that q is a 1/p-
integral packing, where p is a positive integer, if q(C) is restricted to {0, 1

p , 2
p , . . . , p−1

p , 1} for any
S-circuit C. The maximum value of a 1/p-integral packing is denoted by νp

S(G). We prove the
following theorem in Section 3.

Theorem 1.3 Let k be a positive integer. Then there exists a constant f(k) such that, for any
digraph G = (V, E) with S ⊆ V , it holds that either ν5

S(G) ≥ k or τS(G) ≤ f(k).

We now review algorithmic aspects for the circuit packing problem. For an undirected graph,
we can find k disjoint circuits in linear time for fixed k. Indeed, if a given graph has large tree
width, then we can do this from the existence of a large grid minor, and otherwise we can use
the dynamic programming to find disjoint circuits. In contrast, for a directed graph, the circuit
packing problem is W[1]-hard, which follows from Slivkins [18]. Thus the circuit packing problem
for a digraph is not fixed-parameter tractable (FPT) unless the class FPT equals the class W[1].
In the last section of [15], Reed, Robertson, Seymour, and Thomas mentioned an O(nf(k)) time
algorithm for this problem for some function f .

This paper discusses parameterized approximability for the S-circuit packing problem. An
FPT algorithm is an algorithm which runs in f(k)nO(1), where f is a computable function, k

is the parameter value, and n is the size of the input. An FPT algorithm for a parameterized
maximization problem is an FPT approximation algorithm with approximation ratio ρ if given
instance of the problem and a positive integer k the algorithm computes a solution of cost at
least k/ρ(k) if the instance has a solution of cost at least k, where ρ is a computable function
such that k/ρ(k) is nondecreasing and unbounded. Grohe and Grüber [10] devised an FPT
approximation algorithm for the circuit packing problem based on the proof of Theorem 1.1.
Our proof of Theorem 1.3 provides an FPT approximation algorithm for the problem of a 1/5-
integral packing of S-circuits.

Theorem 1.4 The problem of finding a 1/5-integral S-circuit packing has an FPT approxima-
tion algorithm with polynomial running time.
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We will describe the proof of Theorem 1.4 in Section 4.
The linear programing dual of the fractional S-circuit packing problem is the fractional

subset feedback vertex set problem, which is the problem of finding a minimum S-hitting set in
a digraph. For this problem, Even, Naor, Rao, and Schieber [4] and Even, Naor, Schieber, and
Sudan [5] gave O(log ν∗

S log log ν∗
S)-approximation algorithms, which are used to obtain Theorem

1.4 in Section 4. For a planar digraph with S = V , Goemans and Williamson [8] provided a
9/4-approximation algorithm. Their algorithm does not work when S ( V , but their framework
also leads to a 9/4-approximation algorithm for the subset feedback vertex set problem of a
planar undirected graph. For non-planar undirected graphs, Even, Naor, and Zosin [6] presented
an 8-approximation algorithm.

1.2 Preliminaries

The rest of this section is devoted to giving some notations and definitions. We assume that
a path has at least one vertex, and no repeated vertices otherwise specified. A linkage L in
a digraph G is a subdigraph consisting of vertex-disjoint paths. Let a linkage L consist of
P1, . . . , Pk and Pi be a path from ai to bi. Then we say that L links (a1, . . . , ak) to (b1, . . . , bk).
If A,B ⊆ V with a1, . . . , ak ∈ A and b1, . . . , bk ∈ B, then L is called a linkage from A to B. The
number k is the size of L.

A separation in G is an ordered pair (X, Y ) of subsets of V with X ∪ Y = V so that no edge
has the tail in X \ Y and the head in Y \ X. Its order is |X ∩ Y |. We shall frequently need the
following version of Menger’s theorem.

Theorem 1.5 Let G = (V,E) be a digraph with A,B ⊆ V , and k ≥ 0 be an integer. Then
exactly one of the following holds:

• there is a linkage from A to B of size k.

• there is a separation (X,Y ) of G of order < k with A ⊆ X and B ⊆ Y .

2 Two Linkages between Prescribed Vertices and a Hitting Set

Let G = (V, E) be a digraph with S ⊆ V , and H be a minimum S-hitting set. For J ⊆ S, we
denote by λ1(J) the maximum size of a linkage from J to H, and by λ2(J) to J from H. In this
section, we show that there exists a sufficiently large subset T ⊆ S with λ1(T ) = λ2(T ) = |T |.

We first observe the following lemma.

Lemma 2.1 Let G = (V, E) be a digraph with S ⊆ V , and H be a minimum S-hitting set with
|H| = τS(G). If (X, Y ) is a separation with S ⊆ X and H ⊆ Y , then |X ∩ Y | ≥ τS(G) holds.
Similarly, a separation (X,Y ) with H ⊆ X and S ⊆ Y also has the order ≥ τS(G).

Proof: Since each S-circuit C meets both vertices in H and S, the circuit C has a vertex in
X ∩ Y , and hence X ∩ Y is an S-hitting set. Thus τS(G) ≤ |X ∩ Y |. ¤
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Theorem 2.2 Let G = (V, E) be a digraph with S ⊆ V . Let H be a minimum S-hitting set
with |H| = τS(G). Then there exists T ⊆ S with |T | ≥ τS(G)/2 such that G has two linkages of
order |T | from T to H and from H to T .

Proof: Take a maximum subset T ⊆ S such that G has two linkages of order |T | from T to H

and from H to T , that is, λ1(T ) = λ2(T ) = |T |. Let t = |T |. We will show that t ≥ τS(G)/2.
Assume to the contrary that t < τS(G)/2. Let

T1 = {v ∈ S | λ1(T ∪ {v}) = λ1(T )},
T2 = {v ∈ S | λ2(T ∪ {v}) = λ2(T )}.

Note that T ⊆ Ti for i = 1, 2. We denote Si = S \ Ti for i = 1, 2. By the maximality of T , we
have S1 ∩ S2 = ∅.

We first show λ1(T1) = λ2(T2) = t. First assume that λ1(T1) > t, i.e., the maximum size of
a linkage from T1 to H is > t. Take a vertex v ∈ T1 \ T , and let T ′ = T ∪ {v}. Since G has
no linkage of size > t from T ′ to H, it follows from Theorem 1.5 that there exists a separation
(A,B) with T ′ ⊆ A, H ⊆ B, and |A∩B| = t. Among such separations, choose (A,B) such that
A is maximal. The set B \ A has a vertex u of T1, otherwise (A, B) separates T1 and H, which
contradicts λ1(T1) > t. By Theorem 1.5 applied to T ∪ {u} and H, there exists a separation
(A′, B′) with T ∪{u} ⊆ A′, H ⊆ B′, and |A′∩B′| = t. Note that (A∪A′, B∩B′) is a separation
between T ′ and H, which implies that |(A ∪ A′) ∩ (B ∩ B′)| > |A ∩ B| by A ⊂ A ∪ A′ and the
maximality of A. By |A∩B|+ |A′ ∩B′| = |(A∪A′)∩ (B ∩B′)|+ |(A∩A′)∩ (B ∪B′)|, we have
|(A ∩ A′) ∩ (B ∪ B′)| < |A′ ∩ B′| = t. Since (A ∩ A′, B ∪ B′) is a separation between T and H,
this contradicts λ1(T ) = t. Thus we obtain λ1(T1) = t. Similarly, λ2(T2) = t holds.

By λ1(T1) = t, it follows from Theorem 1.5 that there exists a separation (X, Y ) with
T1 ⊆ X, H ⊆ Y , and |X ∩ Y | = t. We denote W = X ∩ Y . Let SY = S \ X. Note
that SY is nonempty, otherwise (X, Y ) separates S and H, which contradicts Lemma 2.1 by
|X ∩ Y | < τS(G). Since T1 ⊆ X, we have SY ⊆ S1, and hence T ∪SY ⊆ T2 because S1 ∩S2 = ∅.
By λ2(T ∪ SY ) ≤ λ2(T2) = t, there exists a separation (X ′, Y ′) with H ⊆ X ′, T ∪ SY ⊆ Y ′, and
|X ′ ∩ Y ′| ≤ t. Let W ′ = X ′ ∩ Y ′.

We claim that W ∪ W ′ is an S-hitting set. Let C be an S-circuit, and v be a vertex in
S ∩V (C). Since C has a vertex in H, the circuit C has a vertex in W if v ∈ S ∩X, and a vertex
in W ′ if v ∈ SY . Thus each S-circuit intersects W ∪ W ′. Therefore, we obtain

τS(G) ≤ |W ∪ W ′| ≤ |W | + |W ′| ≤ 2t.

By 2t < τS(G), this is a contradiction. ¤

3 Fifth-Integral Packing of S-Circuits

In this section, we shall prove Theorem 1.3 by induction on k. If k = 1, then this statement is
obvious. We suppose that, for l ≤ k − 1, there exists f(l) such that, for a digraph G = (V,E)
with S ⊆ V , it holds that ν5

S(G) ≥ l or τS(G) ≤ f(l).
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Lemma 3.1 Assume that k is a positive integer such that f(k − 1) exists. Let G = (V, E) be a
digraph with S ⊆ V such that ν5

S(G) < k, and H be a minimum S-hitting set with |H| = τS(G).
Let A,B ⊆ H be disjoint subsets with |A| = |B| = r, where r ≥ 2f(k − 1). Then there exists a
linkage from A to B of size r with no inner vertices in H.

Proof: Suppose not. Let Z = H \ (A ∪ B). By applying Theorem 1.5 to G \ Z, the graph
G has a separation (X, Y ) with A ⊆ X, B ⊆ Y , Z ⊆ X ∩ Y , and |(X ∩ Y ) \ Z| < r. Since
|A ∪ (X ∩ Y )| < |H| = τS(G), there exists an S-circuit C1 with V (C1) ∩ (A ∪ (X ∩ Y )) = ∅. By
V (C1)∩H ̸= ∅, we have V (C1)∩B ̸= ∅, and hence V (C1)∩Y ̸= ∅. Since (X, Y ) is a separation
and X ∩ Y ∩ V (C1) = ∅, the set V (C1) does not meet X, so V (C1) ⊆ Y \ X. Similarly G has
an S-circuit C2 such that V (C2) ⊆ X \ Y .

Therefore, ν5
S(G \ X) < k − 1 and ν5

S(G \ Y ) < k − 1 hold. Hence the induction hypothesis
implies that τS(G \X) ≤ f(k − 1) and τS(G \ Y ) ≤ f(k − 1). Since every S-circuit that is not a
circuit of G \ X or G \ Y meets X ∩ Y , we have

τS(G) ≤ τS(G \X)+ τS(G \Y )+ |X ∩Y | < 2f(k− 1)+ |Z|+ r = 2f(k− 1)+ |H|− 2r + r ≤ |H|,

which contradicts |H| = τS(G). Thus the statement holds. ¤

Let p be a positive integer. A 1/p-integral linkage L in a digraph G is a subdigraph consisting
of paths, which may not be simple, such that each end vertex of these paths appears exactly once
in these paths, and each inner vertex is in at most p times of them. The size of a 1/p-integral
linkage is the number of paths. A linkage in which each path has a vertex in S is called a linkage
through S. By Theorem 2.2, we show the following lemma.

Lemma 3.2 Assume that k is a positive integer such that f(k − 1) exists. Let G = (V, E) be a
digraph with S ⊆ V such that ν5

S(G) < k, and H be a minimum S-hitting set with |H| = τS(G).
Let A, B ⊆ H be disjoint subsets with |A| = |B| = r, where r ≥ 2f(k−1). Then, if τS(G) ≥ 10r,
there exists a 1/4-integral linkage of order r from A to B through S.

Proof: By Theorem 2.2, there exists T ⊆ S with |T | = t, where t ≥ τS(G)/2 ≥ 5r, such
that G has two linkages L1 from H to T and L2 from T to H, both of whose orders are t.
We may assume that L1 and L2 have no inner vertices in H by taking minimal paths. Let
T = {s1, . . . , st}. We denote by H1 = {a1, . . . , at} ⊆ H the set of the vertices such that L1 links
(a1, . . . , at) to (s1, . . . , st). Similarly, let H2 = {b1, . . . , bt} ⊆ H denote the set of the vertices
such that L2 links (s1, . . . , st) to (b1, . . . , bt). Define H ′

1 = H1 \ {ai, bi | ai or bi ∈ A ∪ B}, and
H ′

2 = H2 \ {ai, bi | ai or bi ∈ A ∪ B}. Then |H ′
1| = |H ′

2| ≥ |T | − 2(|A| + |B|) ≥ r. Take A′ ⊆ H ′
1

with |A′| = r. It follows from Lemma 3.1 that there exists a linkage La of order r from A to A′

with no inner vertex in H. We denote the end vertices of La in A′ by {ai1 , . . . , air}. The linkage
L1 contains a linkage L′

1 which links (ai1 , . . . , air) to (si1 , . . . , sir), and L2 contains a linkage L′
2

which links (si1 , . . . , sir) to (bi1 , . . . , bir), where {bi1 , . . . , bir} ⊆ H ′
2. By Lemma 3.1, G has a

linkage Lb of order r from {bi1 , . . . , bir} to B with no inner vertex in H. Therefore, the union
La ∪L′

1 ∪L′
2 ∪Lb consists of r non-simple paths from A to B such that each inner vertices are in

at most four times of them. Thus G has a 1/4-integral linkage of order r from A to B through
S. ¤

The following theorem is similar to the result of Reed, Robertson, Seymour, and Thomas [15].
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Theorem 3.3 Let k ≥ 1 be an integer such that f(k − 1) exists, and p ≥ 1 be an integer. Then
there exists a constant g(k, p) such that the following holds: For any digraph G = (V, E) and
S ⊆ V with ν5

S(G) < k and τS(G) ≥ g(k, p), there exist disjoint vertices a1, . . . , ap and b1, . . . , bp

such that

• There is a linkage L1 from (a1, . . . , ap) to (b1, . . . , bp).

• There is a 1/4-integral linkage L2 from (b1, . . . , bp) to one of (a1, . . . , ap) and (ap, . . . , a1)
through S.

In order to prove Theorem 3.3, we shall need Ramsey’s theorem [14].

Proposition 3.4 For all integers q, l, r ≥ 1, there exists a (minimum) integer Rl(r, q) ≥ 0 so
that the following holds: For a set Z with |Z| ≥ Rl(r, q), a set Q with |Q| = q, and a function h

from X ⊆ Z with |X| = l onto Q, there exist T ⊆ Z with |T | = r and x ∈ Q so that h(X) = x

for all X ⊆ T with |X| = l.

We also need the following result by Erdős and Szekeres [3].

Proposition 3.5 Let s, t be integers, and let n = (s−1)(t−1)+1, and let a1, . . . , an be distinct
integers. Then either

• there exist 1 ≤ i1 < · · · < is ≤ n so that ai1 < · · · < ais,

• there exist 1 ≤ i1 < · · · < it ≤ n so that ai1 > · · · > ait.

Proof Theorem 3.3: Let

l = (p − 1)2 + 1,

r = max{2f(k − 1), (p + 1)l},
q = (l! + 1)2,

and define
g(k, p) = max{10r,Rl(r, q) + l}.

We claim that g(k, p) satisfies the theorem. Let G be a digraph such that ν5
S(G) < k and

τS(G) ≥ g(k, p), and H be a minimum S-hitting set with |H| = τS(G). Choose A ⊆ H with
|A| = l and Z = H \ A. Thus |Z| ≥ Rl(r, q).

Let Z = {zi | 1 ≤ i ≤ |Z|}. For each X = {zi1 , . . . , zix} ⊆ Z, where i1 < · · · < ix, we denote
by X̄ the x-tuple (zi1 , . . . , zix), and for 1 ≤ h ≤ x, we denote zih by X̄(h).

Let X ⊆ Z with |X| = l. We define a function p1(X) as follows. If there exists a linkage
L1(X) of order l from A to X with no vertex in Z \X, then there exists a sequence (a1, . . . , al) of
A so that L1(X) links (a1, . . . , al) to X̄, and define p1(X) = (a1, . . . , al). If no such linkage from
A to X, then define p1(X) = ∅. We next define a function p2(X) as follows. If there exists a 1/4-
integral linkage L2(X) of order l from X to A through S, then there exists a sequence (b1, . . . , bl)
of A so that L2(X) links X̄ to (b1, . . . , bl) 1/4-integrally, and define p2(X) = (b1, . . . , bl). If no
such 1/4-integral linkage from A to X, then p2(X) = ∅.
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We define h(X) to be the pair (p1(X), p2(X)). Let Q be the set of all pairs (a, b) such that
each of a, b is either the empty set or a sequence of l vertices in A. Then |Q| = (l! + 1)2, and
h(X) ∈ Q for each X ⊆ Z with |X| = l. By Proposition 3.4, there exists T ⊆ Z with |T | = r

and (a, b) ∈ Q such that h(X) = (a, b) for any X ⊆ T with |X| = l. Note that a and b are not
the empty set. Indeed, suppose a = ∅. Then take a set A′ with A ⊆ A′ ⊆ H \T and |A′| = r. By
Lemma 3.1, there exists a linkage of order r from A′ to T with no vertex in H \ (A′ ∪ T ). This
linkage includes a linkage of order l from A to a subset X of T with no vertex in H \ (A ∪ X),
which contradicts a = ∅. Thus a is not the empty set. Similarly, Lemma 3.2 implies that there
exists a 1/4-integral linkage of order r from T to A′ through S. This 1/4-integral linkage includes
a 1/4-integral linkage of order l from a subset X of T to A through S. Thus b is not the empty
set.

Let a = (a1, . . . , al) and b = (b1, . . . , bl). For 1 ≤ i ≤ l, define ji so that bji = ai . By
Proposition 3.5, there exists 1 ≤ i1 < i2 < · · · < ik ≤ n so that

ji1 < ji2 < · · · < jik

or
ji1 > ji2 > · · · > jik .

Define (i′1, i
′
2, . . . , i

′
k) = (ji1 , ji2 , . . . , jik) in the first case, (i′1, i

′
2, . . . , i

′
k) = (jik , jik−1

, . . . , ji1) in
the second case.

Let D = {T̄ (l), T̄ (2l), . . . , T̄ (kl)}. Choose X ⊆ T with |X| = l and X̄(ih) = T̄ (hl) for
1 ≤ h ≤ k. We can do this since there are ≥ l − 1 items in T̄ between two items in D. Then
the linkage L1(X) links (a1, . . . , al) to X̄ which includes a linkage L1 from (ai1 , . . . , aik) to D̄.
Similarly, choose Y ⊆ T with Ȳ (i′h) = T̄ (hl) for 1 ≤ h ≤ k. Then the 1/4-integral linkage L2(Y )
includes a 1/4-integral linkage from D̄ to (ai′1

, . . . , ai′k
). This completes the proof. ¤

We are now ready to prove Theorem 1.3.
Proof of Theorem 1.3: We prove this statement by induction on k. Assume that k ≥ 1 and
f(k − 1) exists. Let f(k) = g(k, 10k), where g is as in Theorem 3.3. Suppose that G = (V,E)
and S ⊆ V satisfies ν5

S(G) < k and τS(G) > g(k, p). Then it follows from Theorem 3.3 that G

has a linkage L1 of order 10k and a 1/4-integral linkage L2 of order 10k through S as in Theorem
3.3. Since the ith and (10k + 1− i)th paths in both linkages L1 and L2 form an S-circuit which
may not be simple, we obtain at least one simple S-circuit from these paths. Hence L1 ∪ L2

contains at least 5k such S-circuits C1, . . . , C5k such that each vertex is contained in at most
five of them. Therefore, by defining q(Ci) = 1/5 for 1 ≤ i ≤ 5k and q(C) = 0 for the other
S-circuits, we know the maximum value of q is ≥ k, which contradicts the assumption. Hence
such G does not exists, and consequently the statement holds. ¤

4 FPT Approximation Algorithm for Fifth-integral Packing

In this section, we present an FPT approximation algorithm for a fifth-integral packing of S-
circuits. Our algorithm is a recursive one derived from making the proof of Theorem 1.3 algo-
rithmic.
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The framework of this algorithm is designed by analogy with Grohe and Grüber [10]. We
will first design an algorithm A that computes a 1/5-integral packing of S-circuits of size at least
ν∗(G)/ρ(ν∗(G)) for a given digraph G and some computable function ρ such that the running
time is bounded by g(ν∗(G)) · |G|O(1) for some computable function g and the input size |G|. It
follows from Proposition 9 in [1] that the algorithm A implies an FPT approximation algorithm
for the 1/5-integral S-circuit packing problem, which proves Theorem 1.4.

It remains to describe the algorithm A. This algorithm is a recursive algorithm based on the
following two lemmas. The first one below can be obtained from the proofs of Lemmas 3.1, 3.2,
and Theorem 2.2. For the completeness, we give a sketch of the proof.

Lemma 4.1 Let G = (V, E) be a digraph with S ⊆ V , and H be an S-hitting set. Let r ≤
|H|/10. Then at least one of the following holds:

(i) For all distinct A,B ⊆ H with |A| = |B| = r, there exist a linkage from A to B of size r

with no inner vertices in H and a 1/4-integral linkage from B to A through S of order r.

(ii) There is an S-hitting set H ′ with |H ′| < |H|.

(iii) There are two vertex disjoint subgraphs Gi, S-circuits Ci of Gi, and S-hitting sets Hi

of Gi for i = 1, 2 such that |H1| = |H2| = r and, for any S-hitting sets H ′
i of Gi with

i = 1, 2 the set H ′
1 ∪ H ′

2 ∪ (V \ (V (G1) ∪ V (G2))) is an S-hitting set of size at most
|H ′

1| + |H ′
2| + |H| − (r + 1).

Furthermore, we can decide in 3|H| · |G|O(1) time if H satisfies (i), (ii), or (iii), where |G| is the
input size.

Sketch of Proof: By the proof of Theorem 2.2, if there is no set T ⊆ S with λ1(T ) = λ2(T ) ≥
|H|/2, then (ii) holds, which can be tested in polynomial time with the aid of network flow
algorithms. Assume that such T exists. By the proof of Lemma 3.1, if there exists A, B ⊆ H

with |A| = |B| = r such that G has no linkage from A to B of size ≥ r with no inner vertices
in H, then we know that (ii) or (iii) holds. If there is no such A and B, then H satisfies (i) by
Lemmas 3.1 and 3.2. Since we can find a linkage of size < r between given two vertex sets in
polynomial time, we can obtain such sets A,B ⊆ H in 3|H| · |G|O(1) time. ¤

It is known in [9] that for integers q, l, r ≥ 1 the value Rl(r, q) in Proposition 3.4 is bounded
by

Rl(r, q) ≤ exp(l)(cqr),

for some constants cq, where exp(l)(x) is the iterated exponential function defined inductively as
exp(l)(x) = x and exp(l)(x) = 2exp(l−1)(x) for l ≥ 2. For a digraph G, we define κ = κ(G) to be
the maximum integer with

(κ − 1)2 + 1 + exp((κ−1)2+1)(c(((κ−1)2+1)!+1)2(κ + 1)((κ − 1)2 + 1)) ≤ ν∗
S(G).

We denote
µ(G) = (κ + 1)((κ − 1)2 + 1).

The following lemma follows from the same construction as the proof of Theorem 3.3.
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Lemma 4.2 There is a computable, nondecreasing, and unbounded function φ such that the
following holds: Let G = (V, E) be a digraph with S ⊆ V , r ≤ µ(G), and H be an S-hitting set
with |H| ≥ 10r such that (i) in Lemma 4.1 holds. Then there exists a 1/5-integral packing of
S-circuits of size at least φ(r).

Note that φ(r) can be defined to be the maximum integer with (10φ(r) + 1)((10φ(r)− 1)2 +
1) ≤ r.

We now design the algorithm A by the following argument in Lemma 11 of [10]. The algorithm
A starts with computing an S-hitting set H of G of size O(ν∗

S log ν∗
S log log ν∗

S) using polynomial-
time algorithms such as [4, 5]. Then we recursively do the following procedure for a pair (G,H)
with a digraph G and an S-hitting set H: If H satisfies (i) of Lemma 4.1 then we obtain a
1/5-integral packing of S-circuits with a sufficiently large size by Lemma 4.2. If H satisfies
(iii) then we split G into G1 and G2 with |H1| ≥ |H2|, keep the S-circuit C2, and repeat this
procedure for (G1,H1). We call this step a splitting step. The remaining case is that H satisfies
(ii). In this case, if G is the input of A then do the procedure for (G,H ′). Otherwise, G is
a subdigraph obtained by some splitting steps. In the last splitting step, let (G0,H0) produce
(G,H) and the other subdigraph (G1,H1). Then construct an (S ∩ V (G0))-hitting set H ′

0 of
G0 using H ′ and H1 as (iii) of Lemma 4.1. If |H ′

0| < |H0| then do the procedure for (G0,H
′
0).

Else if |H ′| < |H1| apply the procedure for (G1,H1), and otherwise for (G,H ′). We repeat this
procedure until H satisfies (i) or G is a subdigraph obtained by O(logµ(G)) splitting steps. Note
that this procedure has a step going back to a larger digraph, but such step reduces the size of an
S-hitting set. Hence the algorithm A terminates in g(ν∗(G)) · |G|O(1) times for some computable
function g. The output is a 1/5-integral packing of S-circuits with a sufficiently large size. Thus
we obtain the desired algorithm A.
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